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Abstract: The modulation instability (MI) in optical fibre amplifiers and 

lasers with anomalous dispersion leads to CW radiation break-up and 

growth of multiple pulses. This can be both a detrimental effect limiting 

the performance of amplifiers, and also an underlying physical 

mechanism in the operation of MI-based devices. Here we revisit the 

analytical theory of MI in fibre optical amplifiers. The results of the 

exact theory are compared with the previously used adiabatic 

approximation model and the range of applicability of the later is 

determined. 

OCIS codes 140.3430, 140.3510, 190.4370, 140.4780 

Modulation instability (MI) is a fundamental nonlinear effect [1-3] that manifests 

itself in optics e.g. as a spontaneous break-up of a continuous wave (CW) radiation 

with high enough power into modulated light wave or periodic train of pulses (it is 



not possible to overview all the literature on MI effects in optics, however here we 

focus only on MI in active optical media see e.g. [1-15] and references therein).  In 

optical fibre MI occurs as a result of interplay between the effects of the anomalous 

group-velocity dispersion (GVD) and self-phase modulation. In active fibre, the 

modulation instability is enhanced by interactions with optical noise providing 

seeding perturbations over a range of wavelengths [3]. The MI effect might play a 

destructive role – leading to degradation of a quality of optical waves and beams. For 

instance, amplification of powerful laser radiation in optical fibre amplifiers with 

anomalous dispersion might suffer from the MI effect [3] that leads to the break-up of 

CW radiation, exponential growth of modulations and, as a result, the appearance of 

multiple pulses and irregularities in the power distribution.  The problem, in 

particular, might be relevant to Erbium-doped optical amplifiers widely used at the 

telecommunication window near 1.5 micron and having anomalous dispersion in this 

spectral range. However, MI can also be exploited in a constructive way, for instance, 

as a technique  to generate an optical pulse train or as a passive mode-locking 

mechanism in fibre lasers [4-10]. In this context, MI is a passive nonlinear effect that 

has cost advantage over schemes using ultrafast modulators.  An important feature of 

this technique is that the generation of continuous streams of short-pulses via MI can 

be realised at high repetition rates. As a nonlinear fibre effect sensitive to dispersion, 

MI is also very attractive for various measurement techniques [11, 12].  Recent 

progress in micro-structured optical fibres offers new opportunities for the control of 

dispersive properties and, thus, to new potential applications of MI across a broad 

spectral range. Quantitative analysis of the modulation instability is important for 

design and optimisation of fibre lasers and amplifiers in which the wave intensity 

grows up exponentially and MI dramatically intensifies nonlinear instabilities. As we 

show below, despite a number of publications, some important aspects of the 

instability development over finite device distance have not yet been 

comprehensively studied. In this work we revisit the theory of MI in active fibre and 

compare exact analytical results to the adiabatic approximation approach [3].   



Over a  wide range of physical parameters, propagation of the optical field down a 

fibre amplifier at leading order is described by the nonlinear Schrödinger equation 

(NLSE) with the gain terms (also called Ginzburg-Landau equation): 

  (1) 

Here  is the group velocity dispersion; nonlinear parameter  

(  is the operational wavelength, nonlinear refractive index, - effective area 

of the fibre); is the small signal gain of the amplifier. The parameter  

characterizes the gain bandwidth of an amplifier (or effect of external filtering). An 

optical field propagates here from z = 0 to z = L. The instability in the amplifier is 

similar to the problem of propagation in non-uniform media [13]. Consider the 

modulation instability of the CW field: 

, here . 

Perturbation to the power evolution then can be found as: 

. Assuming and 

expressing the fields through the corresponding Fourier modes 

 (for simplicity of notations, we omit in what follows the 

index ) yields the standard linear evolution equations (2) for the spectral modes of 

perturbations with the initial conditions to the Caushy problem . When 

,  leads to the standard MI relation [1]: 

 with kz increasing for small values of , reaching its 

maximum at , and approaching zero at . In 

amplifiers, however, where the field power grows as , the most unstable 

frequency of perturbation increases during the propagation due to the power 

exponential growth. To estimate the growth due to MI in an amplifying medium one 



can use the expression for the uniform MI, but replace constant power with the 

growing one . This corresponds to the so-called adiabatic approximation 

(see e.g. [3]) in which it is assumed that the perturbation growth follows the intensity 

adiabatically and the standard NLSE expression with a z-dependent intensity  

can be used. In the inhomogeneous medium the instability evolution is described by 

the equation (2) that can be solved analytically. Introducing 

 the equations for a(z) 

and b(z) can be presented in the form:  

                              (2) 

The solution to (2) can be presented through the Bessel functions and  
(compare to approaches used in [14] in context of short-scale self-focusing and in 

[15] for analysis of modulation instability in lossy fibres): 

                    (3) 

Here

  The solutions (3) are functions of three 

dimensionless parameters:  The Stürmian theory [16] guarantees for the 

Sturm–Liouville problem (2) that the solutions (3) are growing with z under 

condition  For  and  the leading term in the expansion 

of the exact solution reads: 

                          (4)
 

 



 

 
It is seen that in this limit is decaying and  is growing and the growth of 

perturbations in the amplifier is super-exponential. In the opposite limit 
 

both  and  are oscillating. Note that the asymptotic behaviour of not only 

justifies the use of the adiabatic approximation [3] in the limit , but also 

provides the pre-exponential factor. The increment of growth in the adiabatic 

approximation is , with  defined as: 

 

This estimate in many cases describes rather well the asymptotic growth (though 

without the pre-exponent term as in (4)), however, justification and limitations of this 

approach are not clear a priori. The important result of our work is that it gives a 

direct analytical expression for the dynamics of the perturbations for any arbitrary 

initial fluctuations and any propagation distance. The dimensionless scaling allows 

one to apply our analytical results to a range of physical problems.  The power 

growth of the initial perturbations can be characterized by the increment factor 

(similar to the homogeneous case making comparison more convenient) defined as: 

 Here, 

we assume  For large the increment is practically 

independent of boundary conditions. It should be stressed, however, that in the exact 

solutions (4) there are both growing and decaying solutions. For short propagation 

distances, both can contribute to the development of instability – a fact that is often 

overlooked considering MI. This means, in particular, that for short devices where 

MI does not have enough time/distance to develop into an asymptotic state with the 



growing mode dominating completely, the initial phase perturbations given by   

might affect the growth increment of developing modulations. Initial conditions also 

become important near the cut-off of instability as the growth is not large near such 

points and it is influenced by the initial field perturbations. This is illustrated by Fig. 

1 where the relative impact of the initial phase  and amplitude a(0) perturbations 

on the growing solution are shown (the coefficient before the growing solution 

Here and  

 

 
Figure 1. Counterplot of the coefficient 

 

before the growing solution in the plane 

 with  

 
Figure 2. Gain for , 

 here  50 (red), 100 

(green) and 200 (blue) mW; solid lines – 

exact solutions, dashed - adiabatic 

approximation used in [3]. 

In general, the increment factor  is a multi-parametric function of 

the parameters  and L, or in the real-world units  and 

L. Therefore, the existence of the analytical solution is very useful for design 

analysis. For fixed values of other parameters we have to determine the maximum 

value of the increment growth as a function of . In a uniform media (g0L=0), the 

most unstable mode corresponds to =1/2 and cut-off at =1.  In contrast, in an 

amplifier, the most unstable value of  increases during the propagation. For 

illustration we use here similar parameters as in Ref. 



[3]: ; ; amplifier length , the total 

gain . Figure 2 shows the integrated gain for several values of 

the input power. It is seen that the adiabatic approximation (dashed lines) being close 

to the exact solutions (solid lines) still deviates in determination of the frequency of 

the maximal instability. This might be critically important for design of MI-based 

lasers.   

 
Figure 3: Integrated gain  (log scale)  

vs propagation distance for and 

 (red line),  (green  

line),  (blue line); black line – 

,  Inset – normal scale. 

   
Figure 4: Counterplot  in the plane 

  White zone 

corresponds to the oscillating solutions. The 

border between stable and unstable regimes 

is given by the condition:  

 

Figure 3 illustrates the impact of the initial conditions on the instability growth 

(typically overlooked in studies limited by the analysis of the growth increment only) 

showing growth of the integrated gain  with distance for and 

different :  – red line,  – green line,  – blue line. Here 

black line corresponds to . Figure 4 depicts the integrated gain x as a function of 

the normalized frequency p and the total gain G. Note that the  corresponding to 

maximum MI growth shifts up with g0L increasing, the cut-off takes place at >1 

and the most unstable modes corresponds to >1. It means that the most unstable 

modes initially were stable and start to grow only later downstream. The effect of 



 8 

this sliding of the most unstable frequency with the development of MI in the optical 

fibre amplifier has direct impact on the operation MI-based fibre laser and generation 

of pulse trains using MI. For instance, in fibre lasers where MI triggers passive 

mode-locking the instability frequency should be in resonance with the resonator 

frequency and this sliding of the maximum of instability should be taken into 

account. 

 

We have revisited the theory of modulation instability in fibre amplifiers. We found 

the complete analytical solutions of the linear growth that allows us to find the most 

unstable mode and calculated the power growth exactly - without restricting the 

consideration to the asymptotically growing mode as in most previous works.  We 

demonstrated that for practical situations the growth of the perturbation is sensitive 

to the initial perturbation and to their phases. In many applications the initial 

perturbation fields are different from the plane wave and amplify from some other 

distribution than noise. Our results indicate how to modulate the signal to accelerate 

the breaking into shorter pulses and to optimise the design of the soliton laser. Our 

results are directly relevant to the modulation instability in optical fibre amplifiers 

and lasers, but the derived theory is rather general and can be applied in a variety of 

physical applications beyond fibre optics. 
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